NOTES:
 3. ALL NEW CABBON STEEL PPESS SHALL BE MNMMM:

OR SIMLA

JOINT WITH TAPPED FLANGE $\xrightarrow[\text { SIZES UP TO DN250 }]{\text { NTS }}$

JOINT WITH DRILLED FLANGE SIZES UP TO DN250

JOINT WITH DRILLED FLANGE
SIZES DN300 AND ABOVE

$\frac{\text { STUD }}{\text { NTS }}$

MS CLAMP FLANGE DETAIL
nts

MS GUIDE FLANGE $\frac{\text { UP TO DN250 }}{\text { NTS }}$

RUBBER SEALING RING

NOTES:
 3. ALL NEW CABBON STEEL PPESS SHALL BE MINMUM:

 5. REPAR CMENT MORTAR LNNG NA ACOAROANE WTHTS

JOINT WITH TAPPED FLANGE $\frac{\text { SIZES UP TO DN250 }}{\text { NTS }}$

JONT WITH DRILLED FLANGE SIZES UP TO DN250

JOINT WITH DRILLED FLANG
SIZES DN300 AND ABOVE

$\frac{\text { STUD }}{\text { NTS }}$

MS CLAMP FLANGE DETAIL
nts

MS GUIDE FLANGE $\frac{\text { UP TO DN250 }}{\text { NTS }}$

$\frac{\text { AND ABOVE }}{\text { NTS }}$

RUBBER SEALING RING

NOTES:
 3. ALL NEW CABBON STEEL PPESS SHALL BE MINMUM:

JOINT WITH TAPPED FLANGE $\frac{\text { SIZES UP TO DN250 }}{\text { NTS }}$

JONT WITH DRILLED FLANGE SIZES UP TO DN250

JOINT WITH DRILLED FLANGE
SIZES DN300 AND ABOVE

$\frac{\text { STUD }}{\text { NTS }}$

MS CLAMP FLANGE DETAIL
nts

MS GUIDE FLANGE $\frac{\text { UP TO DN250 }}{\text { NTS }}$

\square
RUBBER SEALING RING

DN	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline(\mathrm{mm}) \end{array}$	$\underset{(\mathrm{mm})}{(\mathrm{A})}$	$\underset{(\mathrm{mm})}{(\mathrm{m})}$	$\underset{(\mathrm{mm})}{c}$	$\begin{aligned} & (\mathrm{Dm}) \\ & (\mathrm{mm}) \end{aligned}$	$\underset{(\mathrm{mm})}{\mathrm{E})}$	$\underset{(\mathrm{mm})}{\mathrm{F})}$	$\underset{\substack{\sigma_{(M)}^{(M)}(\mathrm{m}) \\(\mathrm{m})}}{ }$	$\underset{(\mathrm{mm})}{\left(\mathrm{m}_{1}\right)}$	$\begin{gathered} \begin{array}{c} 11 \\ (\mathrm{~mm}) \end{array}, ~ \end{gathered}$	$\begin{aligned} & \sqrt{12}(\mathrm{~mm}) \\ & (\mathrm{m}) \end{aligned}$	k	$\left(\frac{1}{L}\right.$	$\underset{(\mathrm{mm})}{\mathrm{M}}$	$\underset{(\mathrm{mm})}{\mathrm{N}}$	$\begin{array}{\|c} \hline p \\ (m m) \end{array}$	$\underset{(m \mathrm{~mm})}{\substack{a \\ \hline}}$	$\underset{(\mathrm{mm})}{\mathrm{R}}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} (\mathrm{mm}) \end{array}$	$\begin{array}{\|c} \substack{s 2 \\ (\mathrm{~mm}) \\ \hline} \end{array}$	$\underset{(\mathrm{mm})}{\top}$	$\underset{(\mathrm{mm})}{u}$	$\underset{(\mathrm{mm})}{\mathrm{V}}$	$\underset{(\mathrm{mm})}{\mathbf{W}}$	$\begin{gathered} \text { NOO. } \\ \text { STIFENERS } \end{gathered}$	$\begin{aligned} & \text { No. } \\ & \text { BOLTS } \end{aligned}$	DN
80	89	185	146	91	11	11	20	4.5	100	340	255	M16	190	31	18	10	4	2	-	122	6	10	130	5	-	4	80
100	114	215	178	116	13	13	20	4.5	100	350	260	M16	190	31	18	10	4	2	-	154	6	10	130	4.8		4	100
150	168	280	235	171	13	13	20	4.5	100	350	260	M16	190	31	18	10	4	2	-	211	6	10	130	5	-	8	150
200	219	335	292	221	19	19	20	4.5	100	395	290	M16	210	31	18	10	4	2	-	268	6	10	145	5	-	8	200
250	273	405	356	276	19	19	25	4.5	100	450	325	M20	235	37	22	12	4	3		328	6	13	165	5	-	8	250
300	324	455	406	327	23	23	25	4.5	100	485	355	M20	255	37	22	12	4	3	370	-	6	13	180	4.5	-	12	300
350	356	525	470	359	30	30	28	4.5	120	595	465	M24	345	44	26	14	4	3	430	-	6	13	250	4.5	-	12	350
400	406	580	521	409	30	30	28	4.5	120	595	465	M24	345	44	26	14	4	3	485	-	6	13	250	4.5	-	12	400
450	457	640	584	460	30	30	28	4.5	120	595	465	M24	345	44	26	14	4	3	545	-	6	19	250	4.5	-	12	450
500	508	705	641	511	38	38	28	4.5	140	645	510	M24	375	44	26	14	4	3	605	-	6	19	270	5	-	16	500
600	610	825	756	613	48	48	32	5	160	695	570	M27	410	50	30	16	4	3	715	-	6	19	285	5	-	16	600
700	711	910	845	715	56	56	32	5.5	180	755	620	M27	440	50	30	16	4	3	800	-	6	19	315	6	-	20	700
750	762	995	927	765	56	56	36	6	190	770	635	M30	450	55	33	18	4	3	880	-	6	22	320	6	20	20	750
800	813	1060	984	816	56	56	40	6.5	200	885	720	M33	525	60	36	20	4	3	935	-	6	22	360	7	20	20	800
900	914	1175	1092	918	66	66	40	7	220	955	780	M33	565	60	36	20	4	3	1045	-	6	22	390	7	24	24	900
1000	1016	1255	1175	1020	66	66	40	8	220	955	780	M33	565	60	36	20	4	3	1125	-	6	22	390	8	24	24	1000
1200	1219	1490	1410	1224	76	76	40	9.5	240	1025	840	M33	605	60	36	20	4	3	1360	-	6	22	420	9	32	32	1200

JOINT WITH TAPPED FLANGE SIZES UP TO 250 mm

JOINT WITH DRILLED FLANGE SIZES UP TO DN250mm

MS GUIDE FLANGE DN300 $\frac{\text { AND ABOVE }}{\text { NTS }}$

NOTES:

A SECTION

MS GUIDE FLANGE
UP TO DN250

$\left.\frac{\text { MS CLAMP FLANGE DETAIL }}{\text { NTS }} \ddagger \right\rvert\,$

JOINT WITH DRILLED FLANGE
SIZES DN300mm AND ABOVE

$\frac{\text { SLIP-ON 0-RING FLANGE }}{\text { NTS }}$

8. WHERE DISSMLMLAR METALS SRE USED.

ACORDACE WTH AS NSS 21214.

DN	PPEE O.D.	PRESSURE rating (PN)	$\begin{array}{\|c} \hline \text { Flange } \\ \text { 0.D. } \\ D \\ (\mathrm{~mm}) \\ \hline \end{array}$	O-RING O.D. S (mm)	$\begin{gathered} \text { P..D. } \\ \text { p } \\ (m \mathrm{~m}) \end{gathered}$	number of HOLES	diameter OF HOLES $\underset{(\mathrm{mm})}{\mathrm{V}}$	$\begin{gathered} \text { WELD } \\ \text { SIZE } \\ W \\ (\mathrm{~mm}) \end{gathered}$	FASTENER SIZE AND THREAD	FLANGE THICKNESS T (mm)
600	610	16	825	715	756	16	30	6	M27	48
		21	850	735	781	24	36	6	M33	58
		35	850	735	850	24	36	6	M33	68
700	711	16	910	800	845	20	30	6	M27	56
		21	935	810	857	24	36	6	M33	58
		35	935	810	935	24	36	7	M33	78
750	762	16	995	880	927	20	33	6	M30	56
		21	1015	890	940	28	36	6	M33	58
		35	1015	890	1015	28	36	8	M33	78
800	813	16	1060	935	984	20	36	6	M33	56
		21	1060	935	984	28	36	6	M33	68
		35	1060	935	1060	28	36	8	M33	84
900	914	16	1175	1045	1092	24	36	6	M33	66
		21	1185	1055	1105	32	39	6	M36	68
		35	1185	1055	1185	32	39	9	M36	94
1000	1016	16	1255	1125	1175	24	36	6	M33	66
		21	1275	1145	1194	36	39	6	M36	78
		35	1275	1145	1275	36	39	10	M36	98
1200	1219	16	1490	1360	1410	32	36	6	M33	76
		21	1530	1385	1441	40	42	7	M39	88
		35	1530	1385	1530	40	42	12	M39	108

(4) \sim SAWater	

SA WATER STANDARD DRAWING
STANDARD 0-RING FLANGE DETAllS
PN16, PN21, \& PN35
CIVIL

$\frac{\text { ADAPTER FLANGE ASSEMBLY }}{\text { NTS }}$

		PN16											
FLange size		flange	bolt	stud	flange	Bolt	No	STud	No of	$\mathrm{stu}^{\text {stu }}$	THREADED	small	${ }_{\text {LARGE }}$
Small	LARGE	(mm)	(mm)	(mm)	(mm)					(mm)	(mm)		
DN80	DM150	280	235	146	28	M16	8	M16	4	70	24	3mm ELAstomerric	
ON100	ON200	335	292	178	28	M16	8	M16	4	70	24		
ON200	DN300	455	406	292	28	M20	12	M16	8	75	24		
-N200	DN400	580	521	292	28	M24	12	M16	${ }^{8}$	75	24	$3 m m$	3 mm ELAS. NARROW FACE

		PN21											
Flange size		flange	bOLT	$\begin{aligned} & \text { stud } \\ & \text { STO } \end{aligned}$	flange THICKNESS	BOLT	$\begin{gathered} \text { No } \\ \text { BOOTS } \end{gathered}$	$\begin{gathered} \text { stud } \\ \text { SIIF } \end{gathered}$	no of	STUD	threaded	small	LARGE
Small	Large	(mm)	(mm)	(mm)	(mm)					(mm)	(mm)		
DN80	DN150	305	260	165	28	M20	12	M16	8	75	24	$\begin{aligned} & 1.5 \mathrm{~mm} \text { compressed } \\ & \text { FABRRE } \\ & \text { FARROACEACE } \end{aligned}$	
DN100	DN200	370	324	191	28	M20	12	M16	8	75	24		
DN200	DN300	490	438	324	36	M24	16	M20	12	90	30		
DN200	DN400	610	552	324	36	M27	20	M20	12	90	30		

$\frac{\text { EXPANSION CHAMBER ASSEMBLY DETAILS }}{\text { NTS }}$
Ifor use wheree closng collar can Bef ititeo within goomm of the valve)

ALTERNATIVE EXPANSION CHAMBER ASSEMBLY DETAILS
(For use where closng collar can de fitteo withn oormm of the valve)

$\frac{\text { DETALL A }}{\text { NTS }}$

Hosv	$\begin{aligned} & \text { Df } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \text { Tf } \\ \text { (m) } \end{gathered}$	$\begin{aligned} & \text { Ds } \\ & (m \mathrm{~m}) \end{aligned}$	$\begin{gathered} \text { Ts } \\ \text { (SEE NOE 15) } \\ \text { (mm) } \end{gathered}$	$\begin{aligned} & \text { Tc } \\ & (m \mathrm{~m}) \end{aligned}$	N	M	$\begin{gathered} \text { p } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Ls } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~mm}) \end{aligned}$	Tp (mm)
200	200	30	324	10	12	8	M16	292	80	1500	9.5
250	250	38	457	10	12	8	M20	356	80	2000	9.5
300	300	38	508	12	16	12	M20	406	100	2500	12.7
400	400	56	711	12	16	12	M24	521	12	3500	12.7

Hocv	$\begin{aligned} & \mathrm{Df} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{Tf} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { Ds } \\ & (m \mathrm{~m}) \end{aligned}$	$\left.\begin{array}{c} \text { Ts } \\ (\text { SEE } \\ \text { NoTE } \\ (\mathrm{mm}) \end{array}\right)$	$\begin{gathered} \text { Tc } \\ (\mathrm{mm}) \end{gathered}$	N	M	$\begin{gathered} p \\ (m))^{2} \end{gathered}$	$\begin{aligned} & \text { Ls } \\ & \text { (mm) } \end{aligned}$	(mm)	$\begin{gathered} \mathrm{Tp} \\ (\mathrm{~mm}) \end{gathered}$
100	100	30	219	8	10	4	M16	178	70	1000	2
200	200	30	406	10	12	8	M16	292	70	2000	9.5

$\frac{\text { MS STUD DETAIL }}{\text { NTS }}$

NOTES:

1. ALL WELDNG SHALL COMPLY WTHH AS 4041 CLASS 22 AN TS 0420 .

2. PLATE SSD FOR HRUUST COLLAR TO BE MNMUM GRADE 550 .
3. PROR To WELDNG EXtERNaL COATNG SHALL BE SET BACK 100 mm from
WELIs.
4. WHERE THE PPELINE DIAMETER CHANES BEETWEN THE THRUST COLLAR AN

ASSUMED FOR THE SIZING OF THE COLALAR

DETAILS ARE FOR USE ON NEW ONCRETE WALLS AND THRUST BLOCKS REQUIRED.

WALL/BLOCK DESIGNER SHALL ENSURE THE CONCRETE HAS SUFFICIENT STRENGTH AND STABILITY TO RESIS THE IMPOSED THRUST FORCES.

(4.) HS SAWater

(A) SECTION $_{\text {NIS }}$

NOTES:
2. ALt weLing Shall compl with as 4041 CLASS $2 P$ AND TS 0420

ALL New Carbon steel pleework shall be Manufactured to as 157 . AlL New Carbon Stel plpes shall be mimum:

5. PLATE USED FOR CORROSION COLLAR TO BE MIMUM GRADE 250 .

PIPE PLATE THICKNESS UP TO AND INCLUDING: $\stackrel{\dagger}{+}$ (mm)	COLLAR THICKNESS T (mm)	weld size $\stackrel{\text { A }}{\text { (mm) }}$
6	5	5
9	6	5
12	8	5
18	10	6
25	12	6

NOTES:

1. ALL WELING SHALL COMPIY WTH AS 4041 CLASS 22 AND TS 0420 .
2. AlL New Carbon steel prework shall be andufactured to as 159

ALL NEW CARBON STEL PPES SHALL BE MNMMM:
GRRDE 300 - THCKNESSES UP TO

4. REPAR CEMENTS MORTAR LINNG IN ACCORDANE WTH TS 0465 .
6. THE G GADE O O PLATE UEEE FOR THE WELI BAND SHALL BE N N LESS THAN THE MAIN

7. PRROR TO WELDNG EVTERNLL COATING SHALL BE SET BACK FROM BOTH SIDES OF THE
B. All MA TERPLLS THAT MAY COME NTO CONTACT WTH WATER SHALL COMPLY WITH THE
9. AFter band has been nstaled. welded and coled. band to be inected wit

0. once grout has hadenede, weld cap plate over niection poinc.

THICKNESS OF MAIN PIPE	$\begin{aligned} & \text { WELD BAND D } \\ & \text { THCKNEES } \end{aligned}$
	T
t¢9.9mm	10 mm
$10 \mathrm{~mm}+\mathrm{tc1} 1.9 \mathrm{~mm}$	12 mm
$12 \mathrm{~mm}+\mathrm{t} 15.9 \mathrm{~mm}$	16 mm
$16 \mathrm{~mm}+2$ 19.9mm	20 mm

* Preferred nternal and external welos where access is avallable

MAXIMUM ALLOWABLE SPAN BETWEEN SUPPORTS FOR JOINTS WITH EXTERNAL WELD ONLY

MAXIMUM ALLOWABLE SPAN BETWEEN SUPPORTS FOR JOINTS WITH EXTERNAL AND INTERNAL WELDS

UNEQUAL BRANCH WITHOUT
$\frac{\text { REINFORCEMENT }}{\text { NTS }}$

branch offtake						
MAIN PIPE				BRANCH PIPE		
DN	$\begin{aligned} & 00 \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 1(\mathrm{MNN}) \\ & (\mathrm{mm}) \end{aligned}$	$\mathrm{LI}(\mathrm{MIN})$	DN	$\begin{aligned} & \hline 0 \mathrm{OD} \\ & (\mathrm{~mm}) \end{aligned}$	$\underset{(\mathrm{mm})}{\mathrm{T} 2(\mathrm{M} \mid)^{2}}$
100	114	4.8	100	100	114	4.8
150	168	5	150	150	168	5
200	219	5	200	200	219	5
250	273	5	250	250	273	5
300	324	5	300	300	324	5

For Stalless stel branches both pipes shal be fabiatated to

11. ASTM A3BO AND TS 420 .

12. Repar cement Mor Aar Linng in accordance wit Ts 0465 .

boss dimensions					
dN	NPS	threaded		socketed	
		$\begin{gathered} D \\ (\mathrm{~m}) \end{gathered}$	$\begin{aligned} & \mathrm{L} 2 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} D \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L} 2 \\ (\mathrm{~mm}) \end{gathered}$
8	1/4	19	18	18	26
15	1/2	28	24	27	32
20	3/4	35	26	39	37
25	1	44	30	40	41

ATTACHMENT DETAILS FOR THREADED/SOCKETED BOSSES nTs

[^0]

$\begin{array}{\|c\|} \hline \text { PRESSURE } \\ \text { RATING } \end{array}$	OUTSIDE DAMETER OF LLAGGE I (mm)	DIAMETER OF RAISED FACE RAISED FAC (mm)	PITCH CIRCL DIAMETER $\stackrel{P}{P}$ (mm)	NUMBER OF BOLTS N	$\left\lvert\, \begin{gathered} \text { BOLT SIZE } \\ \text { AND THREAD } \end{gathered}\right.$ 0	BOLT HOLE DIAMETER \vee $(m m)$	$\begin{gathered} \text { BOLT } \\ \text { LENGTH } \\ \text { L } \\ (\mathrm{mm}) \end{gathered}$	BOLT/NUT STRENGTH GRADE	cover/FLANGE THINKESS $\stackrel{\top}{\text { (mm) }}$ (mm)	$\begin{gathered} \text { RISER } \\ \text { THICKNESS } \\ R \\ (\mathrm{~mm}) \end{gathered}$	GASKET TYPE	APPROX COVER (kg)
PN16	825	720	756	16	M27	30	135	4.6	48	5	$\begin{gathered} 3 \mathrm{~mm} \\ \text { ELASTOMERIC } \end{gathered}$	200
PN21	850	739	781	24	M33	36	165	8.8	58	5	1.5 mm COMPRESSED FIBRE 	260
PN35		699					185		68	8		300

(4) SAWater (C) SOUTH AUSTRALIAN and shall not be copied or modifie

SA WATER STANDARD DRAWING STANDARD MANHOLE BRANCH \& COVER
FOR MSCL PIPES

CIVIL

$\frac{\text { TYPE } 1 \text { END PLATE }}{\text { NTS }}$

TYPE 1 END PLATE											
DN			PN16			PN21			PN35		
	00	L	Ts	Tp_{p}	Tw	Ts	Tp	Tw	Ts	Tp	Tw
	(mm)										
100	114	350	4.8	8	6	4.8	10	6	4.8	12	6
150	168	350	5	12	7	5	12	7	5	16	7
200	219	350	5	16	7	5	16	7	5	20	7
250	273	350	5	20	7	5	20	7	5	25	7
300	324	350	4.5	20	6	4.5	25	6	5	32	8
350	356	400	4.5	25	6	4.5	25	6	5	32	
400	406	450	4.5	25	6	4.5	32	6	6	40	10
450	457	500	4.5	32	6	4.5	32	7	8	40	11
500	508	550	4.5	32	6	4.5	40	7	8	50	12
550	559	600	4.5	40	6	5	40	8	8	50	13
600	610	650	4.5	40	7	6	50	9	8	60	14
650	660	700	4.5	40	7	6	50	9	9.5	60	15
700	711	750	5	50	8	6	50	10	9.5	70	16
750	762	800	5	50	8	8	60	11	9.5	70	17
800	813	900	6	50	9	7	60	11	12	70	19
900	914	1000	6	60	10	8	70	13	${ }^{12}$	80	21
1000	1016	1100	8	60	11	8	70	14	${ }^{16}{ }^{*}$	90	23
1050	1067	1100	8	70	11	10	80	15	${ }^{16}$	100	24
1200	1219	1200	8	80	13	10	90	17		-	
1400	1422	1400	10	90	17	12	100	22		-	
1600	1626	1600	12	100	20						

* ROLIT PLATE

TYPE 2 END PLATE								
DN	00	L	PN16		PN21		PN35	
			Ts	Tp	Ts	Tp	Ts	Tp
	(mm)							
600	610	650	4.5	40	6	40	8	60
650	660	700	4.5	40	6	50	9.5	60
700	711	750	5	50	6	50	9.5	60
750	762	800	5	50	8	50	9.5	70
800	813	900	6	50	7	60	12	70
900	914	1000	6	60	8	60	${ }^{\text {2 }}$	80
1000	1016	1100	8	60	8	70	${ }^{16}$	80
1050	1067	1100	8	60	10	70	${ }^{16}$	90
1200	1219	1200	8	70	10	80	${ }^{16}$	100
1400	1422	1400	10	90	12	100		
		1600	12	90	16			

* RCLIt PLATE

(4.) IS SAWater

SA WATER STANDARD DRAWING standard pipe details welded end plates FOR MILD STEEL PIPES PN16, PN21, \& PN35

A $1 \frac{\text { Total. she }}{\text { Prolect }}$ $\int_{z 6}$ Project No. $\frac{\text { sinst }}{\text { MAXMo I: }}$

STD-06-00017_01

1 ar $\mathrm{BED}(\alpha \leq 22.5)$

2 ar BED $(225<\alpha \leq 45)$

$\frac{3 \text { ar BED }(45<\alpha \leq 90)}{\text { NTS }}$

(4) \boldsymbol{n} SAWater

SA WATER STANDARD DRAWING STANDARD BENDS FOR MSCL PIPES

A 1 Total shet

LOCATING / STABILITY CLEAT FOR ABOVE GROUND PIPELINES ELEVATION VIEW

NOTE: 2 CLEATS PER SET

NOMINAL PIPE DIAMETER	LENGTH OF CLEAT, L $m m$
≤ 600	150
>600	270

CLEATS TO BE USED TO ATTACH PIPE TO ABOVE GROUND SUPPORTS.
CLEATS Shall NOT BE USED TO TRANSFER LOADS TO THRUST

RESTRAINTS.
\perp
(A)

$$
\frac{\text { PLAN VIEW }}{\text { NTS }}
$$

(A) $\frac{\text { SECTION }}{\text { SCALE } 1: 10}$

A WATER STANDARD DRAWING
Locating / stability cleat
cIVIL

2. ALL NEW CARBON STEEL PREWORKK SHALL BE AE ANUFACTURED TO AS 1579
a. GRADE 300 - THCKNESSSES UP TO ANO INCLUDNG 8 8m

5. Flance Te be fabricated naccordance wit Asinz 088
EXPPSED STEL TO BE TREATED IN A CCORRAACE WTH TS TS 55 , TS $16, \&$, TS 18 AS

DN100 SYMMETRICAL BRANCH
NTS

SYMMETRICAL COMPENSATION PLATE
NTS

$\frac{\text { WELD DETAILS }}{\text { NTS }}$

DN100/DN150 TANGENTIAL BRANCH

(4.) $\operatorname{\text {(4)}}$
sa Water standard drawing
 MAXIMO D:
SUPERSEDES: STD-06-00020 01

NOTES:
$\frac{1 .}{\text { ALL WELDNG SHALL COMPLY WTH AS } 4041 \text { CLASS } 2 P \text { AND TS } 0420 \text {. }}$

3. ALI MATERRALS TAT MAY COME NTT CONTACT WTH WATER SHALL COMPLY
4. PLATE USED For REPARR banos to be crade 300 .

TYPE 1PATCH	
THICNESS Of	HEIGHT OF
PATCH BAND	patch band
${ }^{\top}$	H1
(mm)	(mm)
5	20
6	30

TYPE 1PATCH	
WIDTH OF BREACH W1 (mm)	WIDTH OF PATH L1 (m)
≤ 50	100
$50<\mathrm{W1} \mathrm{\leq 100}$	150
$100<\mathrm{W} 1 \leq 200$	250

$\frac{\text { BOTTOM BAND }}{\text { NTS }}$

PATCH BAND LAP
$\frac{\text { DETAIL }}{\text { NTS }} \quad A$

$\frac{\text { BOTTOM BAND }}{\text { NTS }}$

TYPE 1 PATCH BAND

$\frac{\text { TOP BAND }}{\text { NTS }}$

TYPE 2 PATCH BAND

(4.) IS SAWater

maximo 1 :	
Supersedes:	
DRAWING NUMBERSTD-06-00021_01	

[^0]: $\frac{\text { DETALL }}{\text { NTS }} \quad-\quad x$

