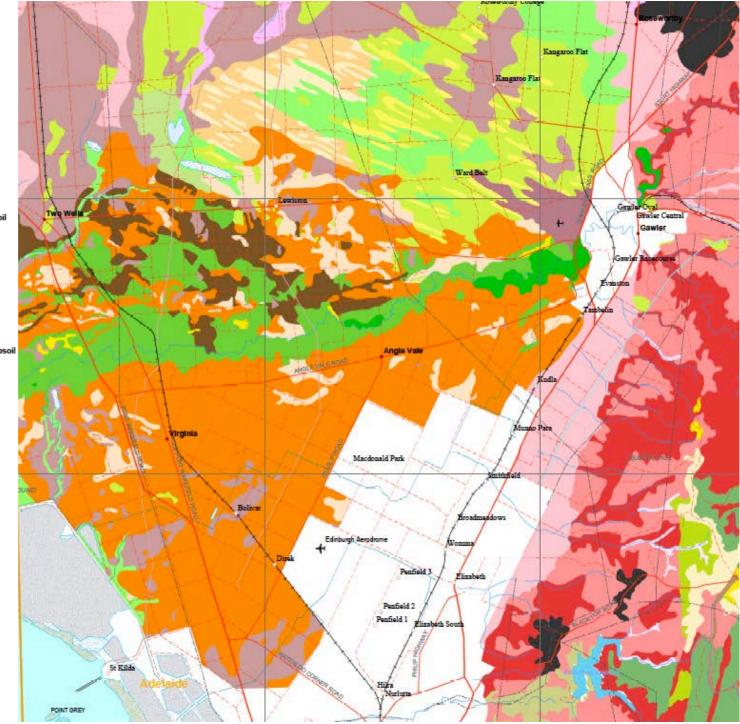
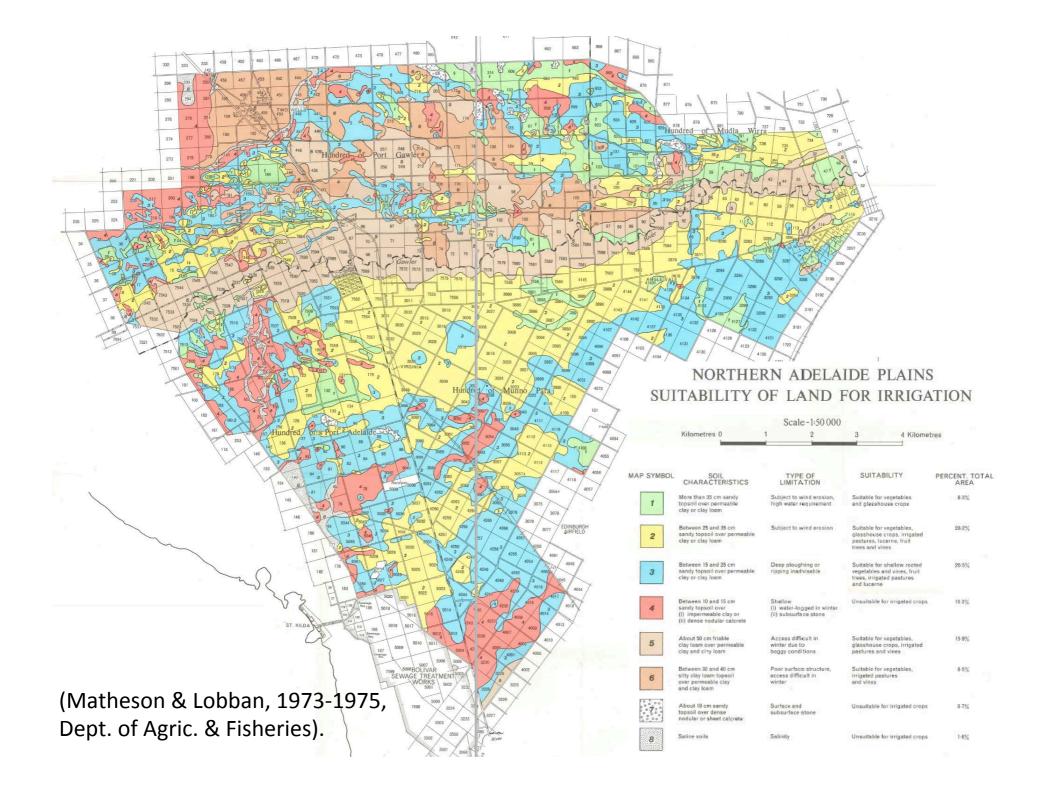


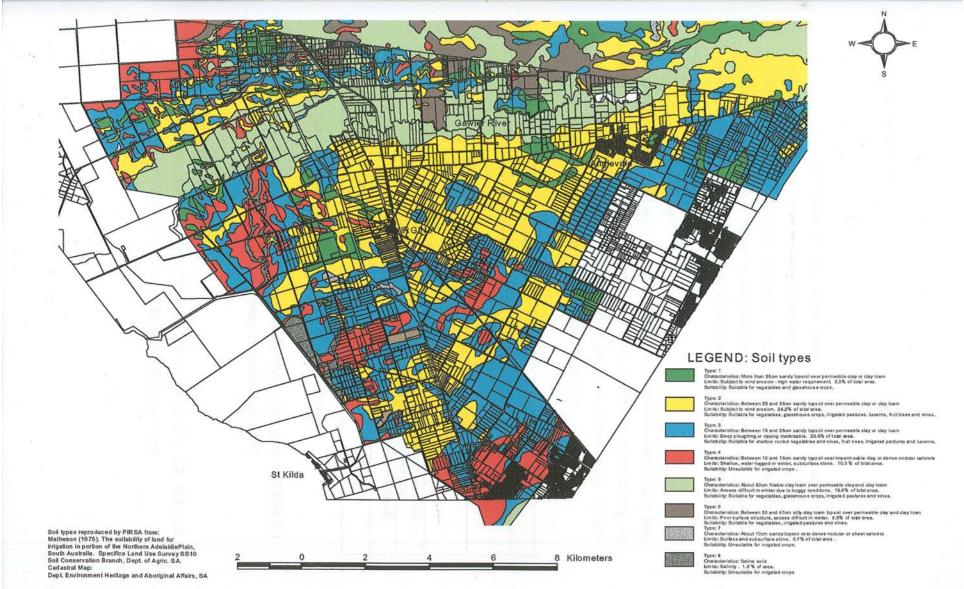
Soils & Hydrogeology of the Northern Adelaide Plains

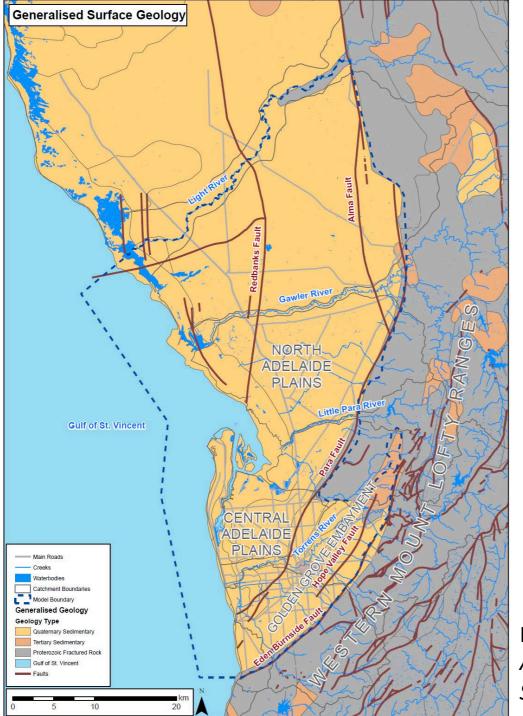
NAIS Community Committee Wednesday 16th March 2016


Overview

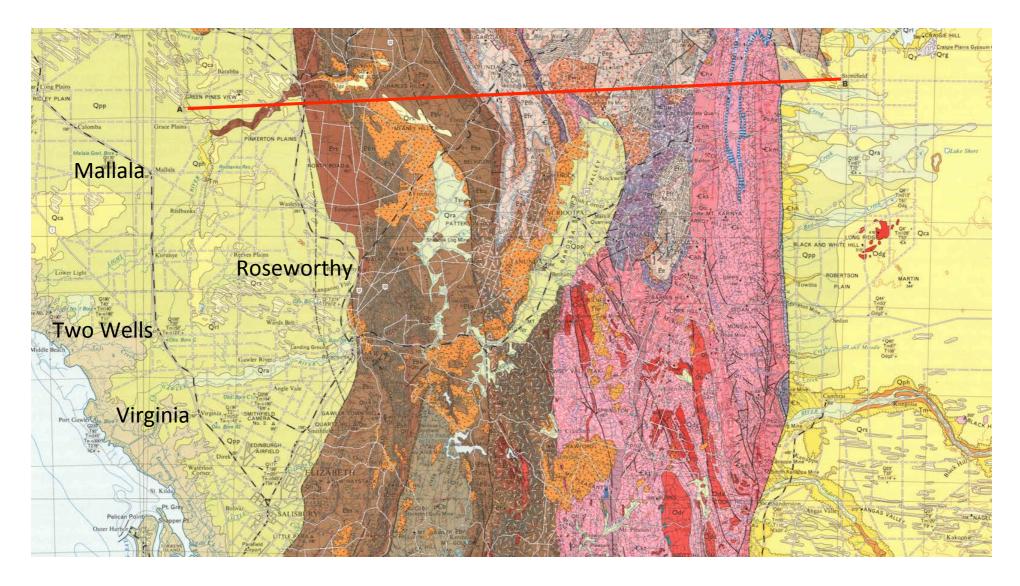

- Soil mapping
- Fractured rock aquifers
- T1 / T2 / T3 / T4 aquifers
- Characteristics of T3 / T4 aquifers
- ASTR research outcomes

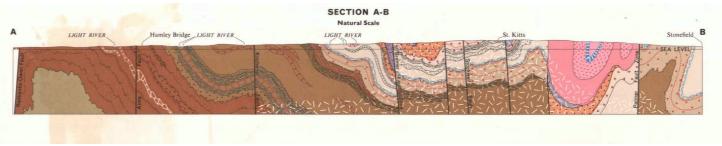
Legend Soil Landscapes of South Australia - Mapping Data Calcareous soils Calcareous loam on rock Moderately calcareous loarn Calcareous loam Calcareous loam on clay Calcareous gradational clay loam Shallow soils on calcrete or limestone Shallow calcareous loam on calcrete Shallow sandy loam on calcrete Shallow red loam on limestone Shallow loam over red clay on calcrete Gradational soils with highly calcareous lower subsoil Gradational sandy loam Gradational loam on rock Friable gradational clay loam Hard red-brown texture contrast soils with alkaline subsoil Loam over clay on rock Loam over red clay Loam over poorly structured red clay Hard loamy sand over red clay ironstone gravelly sandy loam over red clay Loam over poorly structured clay on rock Cracking clay soils Black cracking clay Red cracking clay Brown or grey cracking clay Deep loamy texture contrast soils with brown or dark subsoil Loam over brown or dark clay Sandy loam over poorly structured brown or dark clay Sand over clay soils Sand over sandy clay loam Bleached sand over sandy clay loam Thick sand over clay Sand over poorly structured clay Deep sands Carbonate sand Silceous sand **Bleached siliceous sand** Ironstone soils ironstone soli Shallow to moderately deep acidic soils on rock Acidic gradational loam on rock Acidic loarn over clay on rock Acidic sandy loam over red clay on rock Acidic sandy loam over brown or grey clay on rock Acidic gradational sandy loam on rock Shallow soils on rock Shallow soll on rock Deep uniform to gradational soils Deep sandy loam Deep friable gradational clay loam Deep hard gradational sandy loam Wet soils Saline sol Miscellaneous Rock

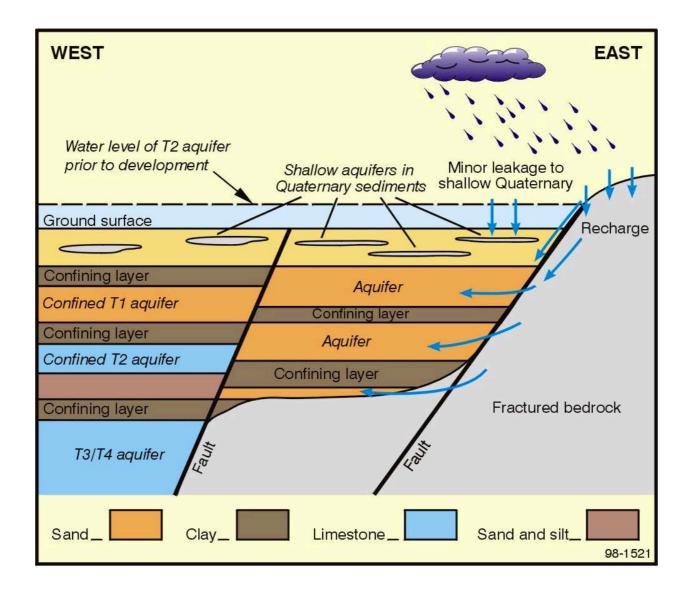

Not applicable

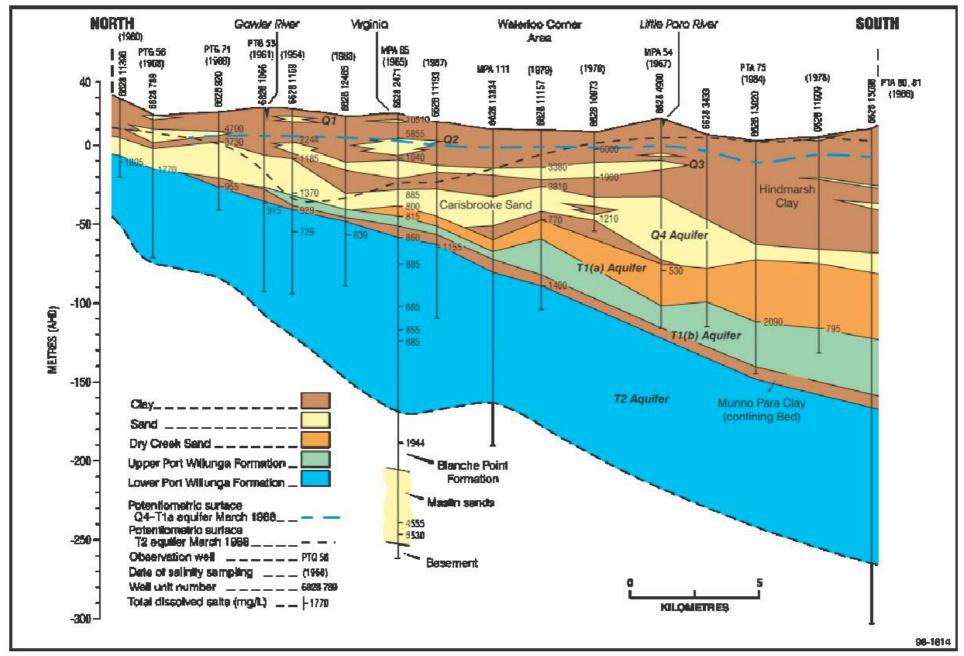


NORTHERN ADELAIDE PLAINS SUITABILITY OF LAND FOR IRRIGATION

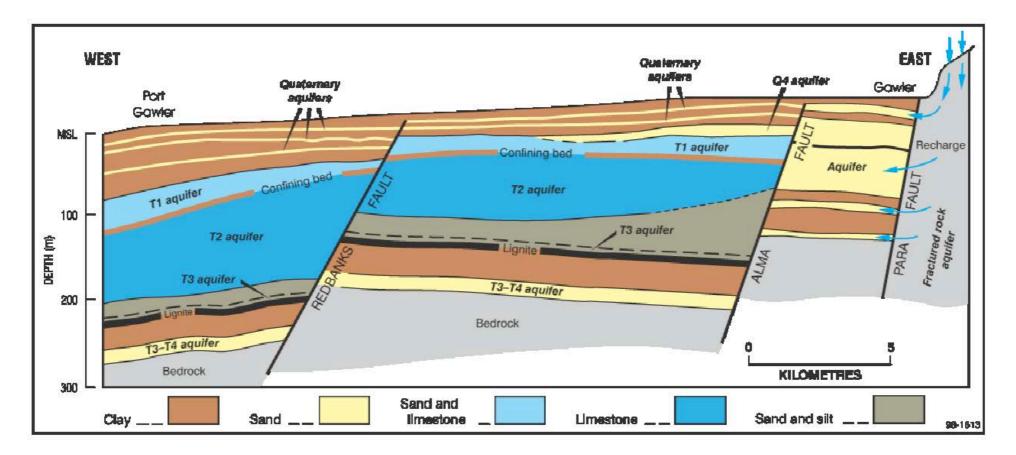

		Scale-1:50 000		
	Kilometres 0	1 2	3 4 Kilome	tres
AP SYMBOL	SOIL	TYPE OF LIMITATION	SUITABILITY	PERCENT. TOTAL
1	More than 35 cm sandy topsoil over permeable clay or clay loam	Subject to wind erosion, high water requirement	Suitable for vegetables and glasshouse crops	8-3%
2	Between 25 and 35 cm sandy topsoil over permeable clay or clay loam	Subject to wind erosion	Suitable for vegetables, glasshouse crops, irrigated pastures, lucerne, fruit trees and vines	28.2%
3	Between 15 and 25 cm sandy topsoil over permeable clay or clay loam	Deep ploughing or ripping inadvisable	Suitable for shallow rooted vegetables and vines, fruit trees, irrigated pastures and lucerne	26.5%
4	Between 10 and 15 cm sandy topsoil over (i) impermeable clay or (ii) dense nodular calcrete	Shallow (i) water-logged in winter (ii) subsurface stone	Unsuitable for irrigated crops	10.3%
5	About 50 cm friable clay loam over permeable clay and chy loam	Access difficult in winter due to boggy conditions	Suitable for vegetables, glasshouse crops, irrigated pastures and vines	15-9%
6	Between 30 and 40 cm silly clay loam topsoil over permeable clay and clay loam	Poor surface structure, access difficult in winter	Suitable for vegetables, irrigaled pastures and vines	8.5%
	About 10 cm sandy topsoil over dense nodular or sheet calcrete	Surface and subsurface stone	Unsuitable for irrigated crops	0.7%
8	Saline soils	Salinity	Unsuitable for irrigated crops	1-6%

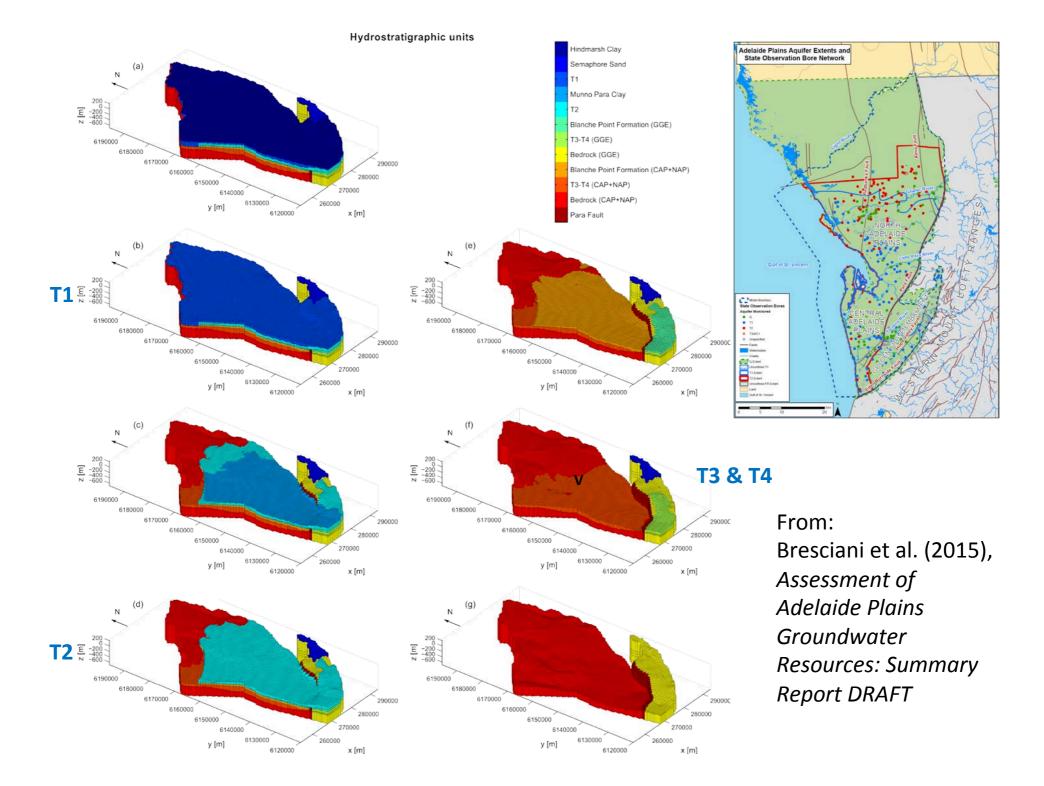



The suitability of land for irrigation in portion of the Northern Adelaide Plain, South Australia (After Matheson, 1975 and Soil Conservation Branch, Dept. of Agric. SA).



From: Bresciani et al. (2015), Assessment of Adelaide Plains Groundwater Resources: Summary Report DRAFT




Schematic Cross Section (North-South) of the Northern Adelaide Plains portion of the Adelaide Plains Sub-Basin (From Martin & Hodgkin, 2005; after Zulfic, 2002)

		Ad	elaide Pl	ains Sub-Basir		
Stratigraphy		Hydro	stratigraphy	Description		
Semaphore Sand, modern alluvium and beach gravels			Unconfin	ned Aquifer	thin sand aquifers near coast	
Saint Kilda Formation			Unconfin	ed Aquifer	thin sand, shell aquifers near coast	
Poo	oraka Formation		Aquitard			
Kes	swick Clay		Aquitard		predominantly clay	
Hindmarsh Clay			Aquitard Aquifers	, Q1 - Q6	aquitard with interbedded thin sandy confined aquifers	
Carisbrooke Sand			Aquifer		confined sandy aquifer, most significant in eastem side of NAP PWA	
Dry Creek Sand					confined sandy aquifer, thickening to the south-west	
Cro	ydon Facies		L1 Aquife	T1A Aquifer	semi-confining bed	
ation	Upper Limest	one	1	T1B Aquifer	confined aquifer, thickening to south and south-west	
Form	Munno Para (Member	Clay	Aquitard	•	confining bed, absent in north of NAB PWA	
Port Willunga Formation	Lower Limestone Ruwarung Member Aldinga Member	^b irramimma Sand Aember	T2 Aquif	er	thick confined aquifer, sandy and thinning in north and north-east of NAB PWA	
Chinaman Gully Formation		T3 Aquif Aquitard	er	mainly a confining bed, minor occurrence as a thin sandy aquifer		
	nche Point Forn tachilla limestor		Aquitard		mainly confining bed	
South Maslin Sand			T4 Aquif	er	thin confined aquifer	
Clinton Formation			Aquitard		confining bed, restricted extent	
North Maslin Sands			T4 Aquif		confined sandy aquifer	
11-	differentiated				mostly localised confined or semi- confined aquifers	
	elaidean		Fracture	d Rock Aquifer		

From Martin & Hodgkin (2005)

Schematic Cross Section (East-West) of the Northern Adelaide Plains portion of the Adelaide Plains Sub-Basin (From Martin & Hodgkin, 2005; after Zulfic, 2002)

Existing T3/T4 Obswells

Tes = South Maslin Sand Ten = North Maslin Sand Toc = Chinaman Gully Fm

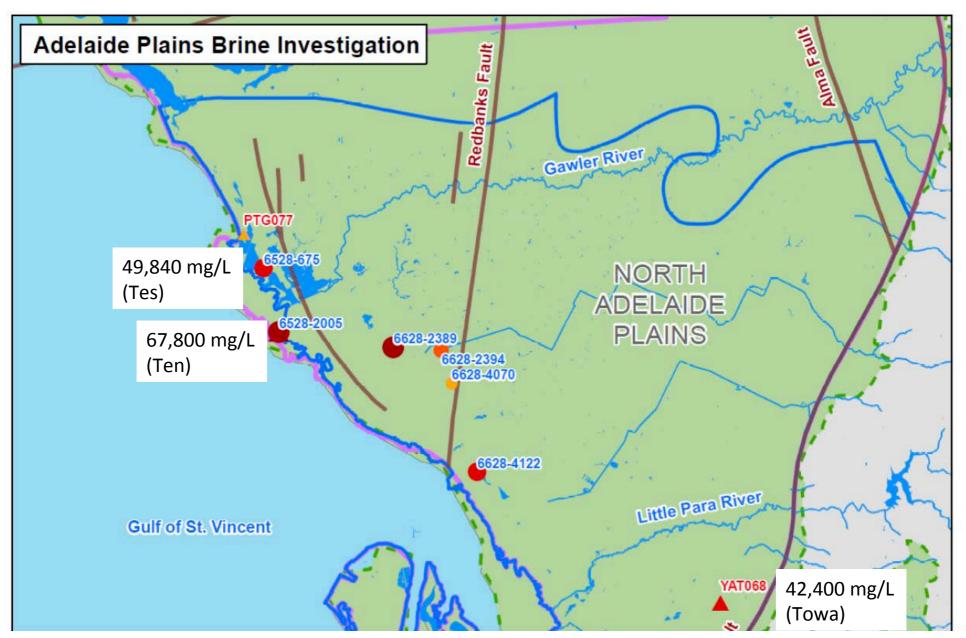
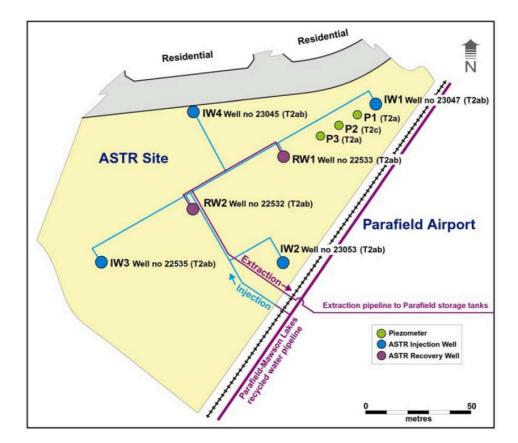


Figure 8 Locations of saline groundwater across the Adelaide Plains with size and shape indicating salinity (mg L-1). Marker symbol indicate if sample has a hydrochemical signature of hypersaline water (triangles) or unknown (circles). The samples span different aquifers but are mostly from the T3, T4 and FRA aquifers, and were taken between 1966 and 2005


Table 13 Summary of T3 Aquifer information (zone 2)

Well Location and Number	Depth to Top of Aquifer (m)	Aquifer Thickness (m)	Salinity (mg/L)	Water level (m)	Supply (L/sec)	Remarks
Edwardstown No. 755	186	9	15850	3	<1	Investigation well completed – South Maslin Sand (Unit 15)
Mitcham Railway Station No. 16	238	4-26	4500	52	?	Investigation well completed – South Maslin Sand (Unit 15)
St James Reserve No. 17	226	5	8410	-	-	Investigation well completed – South Maslin Sand (Unit 15)

Well Name	Depth to Top of Aquifer (m)	Aquifer Thickness (m)	Salinity (mg/L)	Water Level (m)	Supply (m³/day)	Remarks
Allenby Gardens	532	39	100 000 to 140 000 see full analysis	25	61 tested 38 tested	Max DD ~ 5 m; unable to test this well at high yield because of casing size restriction (3") max DD ~ 1.8m
G M Michell	~432	15	~ 30 000 to 40 000	3.5	~ 160	Bedrock salinity in order of 50 000 mg/L
Grange	500	39 SMS	Not known	Not known	Not known	Drilled by Beach Petroleum Co.
Elizabeth Oval	345	7	16 100	14	12.5 L/sec	
Dry Creek	~438	25-62	79 000 to 88 000	Flowing 6- 18m above ground	10 L/sec	Investigation/ production well
Port Gawler MESA investigations	254	36	~21 000	Flowing 9 m above ground	Flowing ~5 L/sec	Bedrock salinity 50 000 mg/L at 318m below ground
Port Gawler Penrice	300 330	17 SMS 15 NMS	55 000	Flowing ?2-5m above ground	~ 40 L/sec	Completed as production well in both South and North Maslin Sands
Minda Home No. 773	414	26	40 700	Flowing 21m above ground	Flow 4 L/sec	Investigation well, completed in South Maslin Sand (Unit 15)
Fish Farm Pelican Point	?356	?9	~ 2800	Flowing ?10m above	1-2 L/sec	located on the up side of Red Bank Fault extension
				ground		poor supply
						large drawdown
						aquifer material are very poorly sorted and contains large amount of clay and lignitic clay

Table 14 Summary of T4 Aquifer information

ASTR at Salisbury

Kremer et al. (2010)

377 ML flushing, followed by 30 ML injection and 106 ML recovery

Residence time before recovery >150 days

Mean residence time of injectant 255-306 days

ASTR at Salisbury

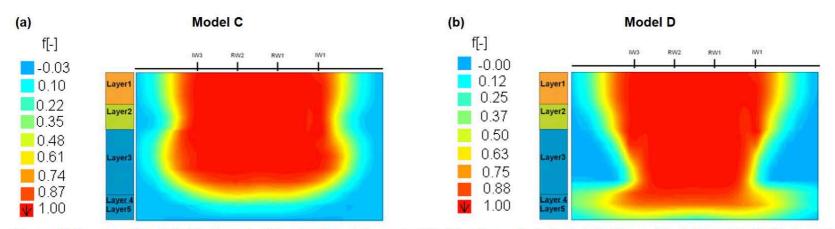


Figure 20 Cross-sectional distribution of mixing fraction at the end of the injection period simulated with models C (a) and D (b). Horizontal scale: 300 m, vertical scale: 60 m.

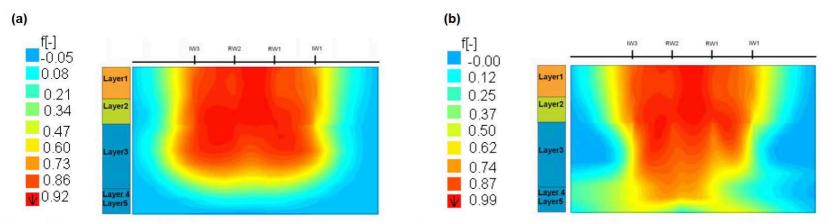
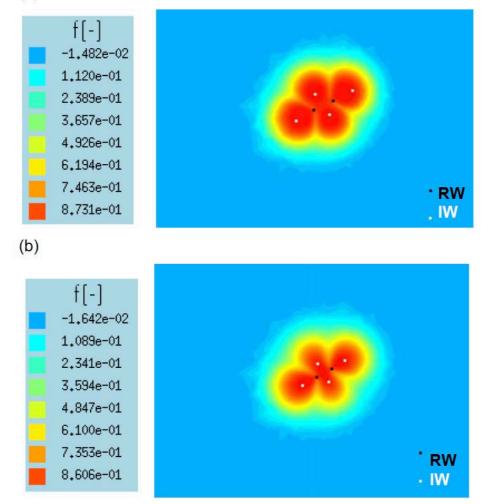



Figure 21 Cross-sectional distribution of mixing fraction at the end of the recovery period simulated with models C (a) and D (b). Horizontal scale: 300 m, vertical scale: 60 m.

Kremer et al. (2010)

ASTR at Salisbury

(a)

Kremer et al. (2010)

Simulated mixing fraction after 6th injection and recovery phases