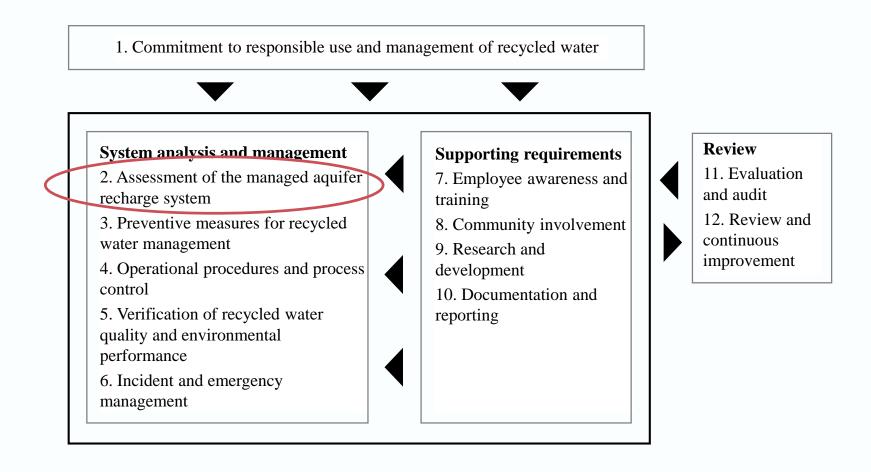
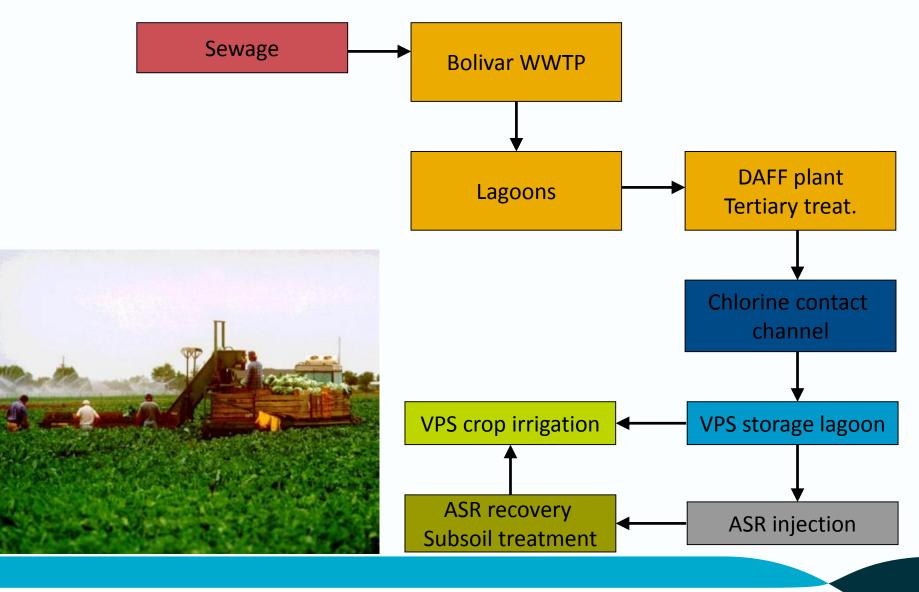


Bolivar recycled water ASR


Risk management

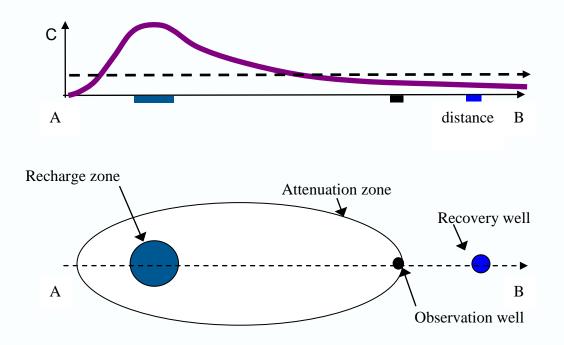
Declan Page | Group Leader, Liveable Sustainable and Resilient Cities 27 January 2016


Framework for managing aquifer recharge

Assessment of the Bolivar ASR system

- The risk assessment has been performed considering the Australian Guidelines for Water Recycling (AGWR) and the Managed Aquifer Recharge Guidelines
- Scope of the risk assessment
 - Source of recycled water, intended uses, receiving environments and routes of exposure
 - Recycled water system analysis
 - Assessment of water quality data
 - Hazard identification

Recycled water system analysis


Source of recycled water, intended uses, receiving environments and routes of exposure

- Source water: raw water treated in Bolivar WWTP and DAFF plant
- Intended uses: crop irrigation
- Receiving environments: aquifer, soil
- Routes of exposure:
 - Human end points: 3 scenarios selected (according to WHO Water Reuse for Irrigation guidelines):
 - Crop consumption
 - Accidental water ingestion (aerosols) by growers/irrigators
 - Accidental water ingestion (aerosols) by local communities
 - Environmental end points: 3 end points selected:
 - Crop
 - Soil
 - Aquifer

Hazard identification

- Hazards identified in the MAR Guidelines:
 - Pathogens
 - Inorganic chemicals
 - Salinity and sodicity
 - Nutrients
 - Organic chemicals
 - Turbidity and particulates
 - Radionuclides
 - Pressure, flow rates, volumes and levels
 - Contaminant migration in fractured rock and karstic aquifers
 - Aquifer dissolution and aquitard and well stability
 - Impacts on groundwater-dependent ecosystems
 - Greenhouse gases

Attenuation zone

Provides adequate residence time of recharged water for natural attenuation of all hazards to meet environmental values

Maximal risk assessment

MAR Hazards	Human		Environment		
Human and Environment routes of exposure and end points	Crops consumption	Irrigators / growers Local communities	Crops	Soil	Aquifer
1. Pathogens					
2. Inorganic chemicals					
3. Salinity and sodicity					
4. Nutrients: nitrogen, phosphorous and organic carbon					
5. Organic chemicals					
6. Turbidity and particulates					
7. Radionuclides					
8. Pressure, flow rates, volumes and groundwater levels					
9. Contaminant migration in fractured rock and karstic aquifers					
10. Aquifer dissolution and stability of well and aquitard					
11. Aquifer and groundwater-dependent ecosystems					
12. Energy and greenhouse gas considerations					

VPS risk assessment

MAR Hazards	Human		Environment		
Human and Environment routes of exposure and end points	Crops consumption	Irrigators / growers Local communities	Crops	Soil	Aquifer
1. Pathogens					
2. Inorganic chemicals					
3. Salinity and sodicity					
4. Nutrients: nitrogen, phosphorous and organic carbon					
5. Organic chemicals					
6. Turbidity and particulates					
7. Radionuclides					
8. Pressure, flow rates, volumes and groundwater levels					
9. Contaminant migration in fractured rock and karstic aquifers					
10. Aquifer dissolution and stability of well and aquitard					
11. Aquifer and groundwater-dependent ecosystems					
12. Energy and greenhouse gas considerations					

Residual risk assessment

MAR Hazards	Human		Environment		
Human and Environment routes of exposure and end points	Crops consumption	Irrigators / growers Local communities	Crops	Soil	Aquifer
1. Pathogens					
2. Inorganic chemicals					
3. Salinity and sodicity					
4. Nutrients: nitrogen, phosphorous and organic carbon					
5. Organic chemicals					
6. Turbidity and particulates					
7. Radionuclides					
8. Pressure, flow rates, volumes and groundwater levels					
9. Contaminant migration in fractured rock and karstic aquifers					
10. Aquifer dissolution and stability of well and aquitard					
11. Aquifer and groundwater-dependent ecosystems					
12. Energy and greenhouse gas considerations					

Critical control points and critical limits applied to Bolivar ASR

Critical control point	Critical limit	Target criteria
DAFF treatment: quality of the injectant	pH > 6.5 During 1 st cycle it was observed that below this pH there was calcite dissolution TDS < 1500 mg/L Contractual limit for VPS Daily average TDS < 900 mg/L Maximum TDS < 1200 mg/L	pH > 7 Ensuring a pHat least neutral prevents an excessive calcite dissolution TDS < 1300 mg/L If this limit is increased, after mixing with the groundwater the recovered water can have a too high TDS Daily average TDS < 900 mg/L Maximum TDS < 1200 mg/L
Quality of recycled water blend suitable irrigation		

Conclusions

- An assessment of the managed aquifer recharge system has been performed, highlighting:
 - The effectiveness of the treatment barriers
 - Appropriateness of the whole recycling system for producing water for crop irrigation
- Hazards to be considered in the DAFF treated + chlorinated water to be used for ASR injection and crop irrigation are:
 - Pathogens: Rotavirus meet the limits set for crops consumption set in the AGWR. Storage in the aquifer also further reduces the risk to acceptable levels
 - Salinity: Although the produced water is under the contractual value between VPS, the cultivation of crops tolerant to the salinity and the long-term effects to the soil should be considered. Salinity can be managed by dilution (e.g. with harvested stormwater), treatment (e.g. reverse osmosis) or crop irrigation management.
- Aquifer treatment is an additional barrier that improves the microbiological quality of the recovered water

Peter Dillon

Honorary Fellow

co-chair IAH Commission on Managed Aquifer Recharge

e pdillon500@gmail.com

Declan Page

Group Leader, Liveable Sustainable Resilient Cities

- t +61 8 8303 8748
- e declan.page@csiro.au

Joanne Vanderzalm

Team Leader, Liveable Sustainable Resilient Cities

- t +61 8 8303 8505
- E joanne.vanderzalm@csiro.au

LAND AND WATER www.csiro.au